950 research outputs found

    Chaos in one-dimensional lattices under intense laser fields

    Full text link
    A model is investigated where a monochromatic, spatially homogeneous laser field interacts with an electron in a one-dimensional periodic lattice. The classical Hamiltonian is presented and the technique of stroboscopic maps is used to study the dynamical behavior of the model. The electron motion is found to be completely regular only for small field amplitudes, developing a larger chaotic region as the amplitude increases. The quantum counterpart of the classical Hamiltonian is derived. Exact numerical diagonalizations show the existence of universal, random-matrix fluctuations in the electronic energy bands dressed by the laser field. A detailed analysis of the classical phase space is compatible with the statistical spectral analysis of the quantum model. The application of this model to describe transport and optical absorption in semiconductor superlattices submitted to intense infrared laser radiation is proposed.Comment: 9 pages, RevTex 3.0, EPSF (6 figures), to appear in Europhys. J.

    Driving-dependent damping of Rabi oscillations in two-level semiconductor systems

    Full text link
    We propose a mechanism to explain the nature of the damping of Rabi oscillations with increasing driving-pulse area in localized semiconductor systems, and have suggested a general approach which describes a coherently driven two-level system interacting with a dephasing reservoir. Present calculations show that the non-Markovian character of the reservoir leads to the dependence of the dephasing rate on the driving-field intensity, as observed experimentally. Moreover, we have shown that the damping of Rabi oscillations might occur as a result of different dephasing mechanisms for both stationary and non-stationary effects due to coupling to the environment. Present calculated results are found in quite good agreement with available experimental measurements

    Organizational learning and emotion: constructing collective meaning in support of strategic themes

    Get PDF
    Missing in the organizational learning literature is an integrative framework that reflects the emotional as well as the cognitive dynamics involved. Here, we take a step in this direction by focusing in depth over time (five years) on a selected organization which manufactures electronic equipment for the office industry. Drawing on personal construct theory, we define organizational learning as the collective re-construal of meaning in the direction of strategically significant themes. We suggest that emotions arise as members reflect on progress or lack of progress in achieving organizational learning. Our evidence suggests that invalidation – where organizational learning fails to correspond with expectations – gives rise to anxiety and frustration, while validation – where organizational learning is aligned with or exceeds expectations – evokes comfort or excitement. Our work aims to capture the key emotions involved as organizational learning proceeds

    Maternal Pre-Pregnancy Obesity Is Associated with Altered Placental Transcriptome

    Get PDF
    Maternal obesity has a major impact on pregnancy outcomes. There is growing evidence that maternal obesity has a negative influence on placental development and function, thereby adversely influencing offspring programming and health outcomes. However, the molecular mechanisms underlying these processes are poorly understood. We analysed ten term placenta's whole transcriptomes in obese (n = 5) and normal weight women (n = 5), using the Affymetrix microarray platform. Analyses of expression data were carried out using non-parametric methods. Hierarchical clustering and principal component analysis showed a clear distinction in placental transcriptome between obese and normal weight women. We identified 72 differentially regulated genes, with most being down-regulated in obesity (n = 61). Functional analyses of the targets using DAVID and IPA confirm the dysregulation of previously identified processes and pathways in the placenta from obese women, including inflammation and immune responses, lipid metabolism, cancer pathways, and angiogenesis. In addition, we detected new molecular aspects of obesity-derived effects on the placenta, involving the glucocorticoid receptor signalling pathway and dysregulation of several genes including CCL2, FSTL3, IGFBP1, MMP12, PRG2, PRL, QSOX1, SERPINE2 and TAC3. Our global gene expression profiling approach demonstrates that maternal obesity creates a unique in utero environment that impairs the placental transcriptome

    Infrared conductivity of a d_{x^2-y^2}-wave superconductor with impurity and spin-fluctuation scattering

    Full text link
    Calculations are presented of the in-plane far-infrared conductivity of a d_{x^2-y^2}-wave superconductor, incorporating elastic scattering due to impurities and inelastic scattering due to spin fluctuations. The impurity scattering is modeled by short-range potential scattering with arbitrary phase shift, while scattering due to spin fluctuations is calculated within a weak-coupling Hubbard model picture. The conductivity is characterized by a low-temperature residual Drude feature whose height and weight are controlled by impurity scattering, as well as a broad peak centered at 4 Delta_0 arising from clean-limit inelastic processes. Results are in qualitative agreement with experiment despite missing spectral weight at high energies.Comment: 29 pages (11 tar-compressed-uuencoded Postscript figures), REVTeX 3.0 with epsf macro

    A Novel System for Transcutaneous Application of Carbon Dioxide Causing an “Artificial Bohr Effect” in the Human Body

    Get PDF
    BACKGROUND: Carbon dioxide (CO(2)) therapy refers to the transcutaneous administration of CO(2) for therapeutic purposes. This effect has been explained by an increase in the pressure of O(2) in tissues known as the Bohr effect. However, there have been no reports investigating the oxygen dissociation of haemoglobin (Hb) during transcutaneous application of CO(2)in vivo. In this study, we investigate whether the Bohr effect is caused by transcutaneous application of CO2 in human living body. METHODS: We used a novel system for transcutaneous application of CO(2) using pure CO(2) gas, hydrogel, and a plastic adaptor. The validity of the CO(2) hydrogel was confirmed in vitro using a measuring device for transcutaneous CO(2) absorption using rat skin. Next, we measured the pH change in the human triceps surae muscle during transcutaneous application of CO(2) using phosphorus-31 magnetic resonance spectroscopy ((31)P-MRS) in vivo. In addition, oxy- and deoxy-Hb concentrations were measured with near-infrared spectroscopy in the human arm with occulted blood flow to investigate O2 dissociation from Hb caused by transcutaneous application of CO(2). RESULTS: The rat skin experiment showed that CO(2) hydrogel enhanced CO(2) gas permeation through the rat skin. The intracellular pH of the triceps surae muscle decreased significantly 10 min. after transcutaneous application of CO(2). The NIRS data show the oxy-Hb concentration decreased significantly 4 min. after CO(2) application, and deoxy-Hb concentration increased significantly 2 min. after CO(2) application in the CO(2)-applied group compared to the control group. Oxy-Hb concentration significantly decreased while deoxy-Hb concentration significantly increased after transcutaneous CO(2) application. CONCLUSIONS: Our novel transcutaneous CO(2) application facilitated an O(2) dissociation from Hb in the human body, thus providing evidence of the Bohr effect in vivo
    • …
    corecore